The GraphRAG Manifesto: Unlock Better GenAI Results With Knowledge Graphs | Read Now

Neo4j logo

Nodes2024

Dev Conference by Neo4j

Register for NODES 24

You only need to register once to attend all sessions.

Beyond the Silos: Achieving Data Harmony With Graph-Based ER

Session Track: Data Science

Session Time:

Session description

Entity Resolution (ER) serves to interlink fragmented and dispersed data, facilitating the identification of records representing identical real-world entities. This function is pivotal for intelligence analysis, enriching investigations by ensuring comprehensive and uniform data merging. This session will showcase a robust end-to-end approach for precise and effective data consolidation, adaptable to batch or incremental processing and predominantly reliant on graphs. Key themes will encompass customizable similarity rules, harnessing node attributes and relationship patterns, and strategic utilization of Neo4j indexes and GDS. Additionally, we’ll delve into diverse data modeling strategies, evaluating their advantages and drawbacks and how to accommodate dynamic data changes.

Speaker

photo of Federica Ventruto

Federica Ventruto

Data Scientist, GraphAware

Federica is a Junior Data Scientist at GraphAware. She holds a master's degree in Mathematics from University of Salento, where she wrote a thesis on data streaming. She is passionate about Machine Learning and Deep Learning, particularly natural language processing, and enjoys data modeling and data querying. With a creative approach, she has already gained experience in these fields with small-scale projects.