Source code for neo4j_graphrag.embeddings.sentence_transformers
# Copyright (c) "Neo4j"
# Neo4j Sweden AB [https://neo4j.com]
# #
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# #
# https://www.apache.org/licenses/LICENSE-2.0
# #
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any
from neo4j_graphrag.embeddings.base import Embedder
[docs]
class SentenceTransformerEmbeddings(Embedder):
def __init__(
self, model: str = "all-MiniLM-L6-v2", *args: Any, **kwargs: Any
) -> None:
try:
import numpy as np
import sentence_transformers
import torch
except ImportError:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
)
self.torch = torch
self.np = np
self.model = sentence_transformers.SentenceTransformer(model, *args, **kwargs)
[docs]
def embed_query(self, text: str) -> Any:
result = self.model.encode([text])
if isinstance(result, self.torch.Tensor) or isinstance(result, self.np.ndarray):
return result.flatten().tolist()
elif isinstance(result, list) and all(
isinstance(x, self.torch.Tensor) for x in result
):
return [item for tensor in result for item in tensor.flatten().tolist()]
else:
raise ValueError("Unexpected return type from model encoding")